Can virtual reality improve neuroanatomy learning? Read this article published in the Journal of Neurosurgery

Abstract

OBJECTIVE
The authors sought to construct, implement, and evaluate an interactive and stereoscopic resource for teaching neuroanatomy, accessible from personal computers.

METHODS
Forty fresh brains (80 hemispheres) were dissected. Images of areas of interest were captured using a manual turntable and processed and stored in a 5337-image database. Pedagogic evaluation was performed in 84 graduate medical students, divided into 3 groups: 1 (conventional method), 2 (interactive nonstereoscopic), and 3 (interactive and stereoscopic). The method was evaluated through a written theory test and a lab practicum.

RESULTS
Groups 2 and 3 showed the highest mean scores in pedagogic evaluations and differed significantly from Group 1 (p < 0.05). Group 2 did not differ statistically from Group 3 (p > 0.05). Size effects, measured as differences in scores before and after lectures, indicate the effectiveness of the method. ANOVA results showed significant difference (p < 0.05) between groups, and the Tukey test showed statistical differences between Group 1 and the other 2 groups (p < 0.05). No statistical differences between Groups 2 and 3 were found in the practicum. However, there were significant differences when Groups 2 and 3 were compared with Group 1 (p < 0.05).

CONCLUSIONS
The authors conclude that this method promoted further improvement in knowledge for students and fostered significantly higher learning when compared with traditional teaching resources.

Article link

A review article published in the latest issue of Brain

Abstract

Multiple sclerosis is a chronic inflammatory disease with primary demyelination and neurodegeneration in the central nervous system. In our study we analysed demyelination and neurodegeneration in a large series of multiple sclerosis brains and provide a map that displays the frequency of different brain areas to be affected by these processes. Demyelination in the cerebral cortex was related to inflammatory infiltrates in the meninges, which was pronounced in invaginations of the brain surface (sulci) and possibly promoted by low flow of the cerebrospinal fluid in these areas. Focal demyelinated lesions in the white matter occurred at sites with high venous density and additionally accumulated in watershed areas of low arterial blood supply. Two different patterns of neurodegeneration in the cortex were identified: oxidative injury of cortical neurons and retrograde neurodegeneration due to axonal injury in the white matter. While oxidative injury was related to the inflammatory process in the meninges and pronounced in actively demyelinating cortical lesions, retrograde degeneration was mainly related to demyelinated lesions and axonal loss in the white matter. Our data show that accumulation of lesions and neurodegeneration in the multiple sclerosis brain does not affect all brain regions equally and provides the pathological basis for the selection of brain areas for monitoring regional injury and atrophy development in future magnetic resonance imaging studies.

Article link

A multicenter study, published on behalf the MAGNIMS Study group, about MRI correlations of cognitive impairment in MS.

Abstract

In a multicenter setting, we applied voxel-based methods to different structural MR imaging modalities to define the relative contributions of focal lesions, normal-appearing white matter (NAWM), and gray matter (GM) damage and their regional distribution to cognitive deficits as well as impairment of specific cognitive domains in multiple sclerosis (MS) patients. Approval of the institutional review boards was obtained, together with written informed consent from all participants. Standardized neuropsychological assessment and conventional, diffusion tensor and volumetric brain MRI sequences were collected from 61 relapsing-remitting MS patients and 61 healthy controls (HC) from seven centers. Patients with ≥2 abnormal tests were considered cognitively impaired (CI). The distribution of focal lesions, GM and WM atrophy, and microstructural WM damage were assessed using voxel-wise approaches. A random forest analysis identified the best imaging predictors of global cognitive impairment and deficits of specific cognitive domains. Twenty-three (38%) MS patients were CI. Compared with cognitively preserved (CP), CI MS patients had GM atrophy of the left thalamus, right hippocampus and parietal regions. They also showed atrophy of several WM tracts, mainly located in posterior brain regions and widespread WM diffusivity abnormalities. WM diffusivity abnormalities in cognitive-relevant WM tracts followed by atrophy of cognitive-relevant GM regions explained global cognitive impairment. Variable patterns of NAWM and GM damage were associated with deficits in selected cognitive domains. Structural, multiparametric, voxel-wise MRI approaches are feasible in a multicenter setting. The combination of different imaging modalities is needed to assess and monitor cognitive impairment in MS.

Article link

The results of the INFORMS study were published in the latest issue of the Lancet. Fingolimod was not effective in reducing disability progression in primary progressive multiple sclerosis

Abstract

Background
No treatments have been approved for primary progressive multiple sclerosis. Fingolimod, an oral sphingosine 1-phosphate receptor modulator, is effective in relapse-onset multiple sclerosis, but has not been assessed in primary progressive multiple sclerosis. We assessed the safety and efficacy of fingolimod in patients with primary progressive multiple sclerosis.

Methods
In INFORMS, a multicentre, double-blind, placebo-controlled parallel-group study, patients with primary progressive multiple sclerosis recruited across 148 centres in 18 countries were randomly allocated (1:1) with computer-generated blocks to receive oral fingolimod or placebo for at least 36 months and a maximum of 5 years. Patients were initially assigned to fingolimod 1·25 mg per day or placebo (cohort 1); however, after a protocol amendment on Nov 19, 2009, patients were switched in a masked manner to fingolimod 0·5 mg, whereas those on placebo continued on matching placebo. From then onwards, patients were assigned to receive fingolimod 0·5 mg/day or placebo (cohort 2). Key inclusion criteria were age 25–65 years, clinical diagnosis of primary progressive multiple sclerosis, 1 year or more of disease progression, and two of the following criteria: positive brain MRI; positive spinal cord MRI; or positive cerebrospinal fluid. Additional eligibility criteria included disease duration of 2–10 years and objective evidence of disability progression in the previous 2 years. Patients and study investigators were masked to group assignment. We used a novel primary composite endpoint based on change from baseline in Expanded Disability Status Scale (EDSS), 25' Timed-Walk Test, or Nine-Hole Peg Test to assess time to 3-month confirmed disability progression in study participants treated for at least 3 years. All randomised patients took at least one dose of study drug. The primary efficacy analysis included all patients in cohort 2 and those assigned to placebo in cohort 1. The safety analysis included all patients in cohorts 1 and 2. This study is registered with ClinicalTrials.gov, number NCT00731692. The study is now closed.

Findings
970 patients were randomly assigned between Sept 3, 2008, and Aug 30, 2011 (147 to fingolimod 1·25 mg and 133 to placebo in cohort 1; 336 to fingolimod 0·5 mg and 354 to placebo in cohort 2). The efficacy analysis set (n=823) consisted of 336 patients randomly allocated to fingolimod 0·5 mg and 487 to placebo. Baseline characteristics were similar across groups and representative of a primary progressive multiple sclerosis population (48% women, mean age 48·5 years [SD 8·4], mean EDSS 4·67 [SD 1·03], 87% free of gadolinium-enhancing lesions). By end of study, 3-month confirmed disability progression had occurred in 232 and 338 patients in the fingolimod and placebo groups, respectively, resulting in Kaplan-Meier estimates of 77·2% (95% CI 71·87–82·51) of patients in the fingolimod group versus 80·3% (73·31–87·25) of patients in the placebo group (risk reduction 5·05%; hazard ratio 0·95, 95% CI 0·80–1·12; p=0·544). Safety results were generally consistent with those of studies of fingolimod in patients with relapse-onset multiple sclerosis. Lymphopenia occurred in 19 (6%) patients in the fingolimod group versus none in the placebo group, bradycardia in five (1%) versus one (<1%), and first-degree atrioventricular block in three (1%) versus six (1%). Serious adverse events occurred in 84 (25%) patients in the fingolimod group and 117 (24%) in the placebo group, including macular oedema in six (2%) versus six (1%), and basal-cell carcinoma in 14 (4%) versus nine (2%).

Interpretation
The anti-inflammatory effects of fingolimod did not slow disease progression in primary progressive multiple sclerosis. Therapeutic strategies for primary progressive multiple sclerosis might need different approaches to those used for relapse-onset multiple sclerosis.

Article link

This open access article assessed the efficacy and safety of bevacizumab in the treatment of NMO relapses as an add on therapy to high dose corticosteroids.

Abstract

Objectives
Neuromyelitis optica (NMO) is a relapsing autoimmune disease targeting the spinal cord and optic nerve leading to paralysis and blindness. Current treatment for acute NMO attacks is immunosuppression with high-dose corticosteroids and/or plasmapheresis. Preclinical animal studies suggest that bevacizumab might be beneficial in limiting the extent of inflammation during a NMO relapse by reducing the disruption of the blood–brain barrier.

Methods
We carried out an open-label phase 1b safety and proof-of-concept trial in 10 participants with NMO immunoglobulin G seropositive NMO, NMO spectrum disease and those at high risk for developing NMO/NMO spectrum disease who presented with an acute attack of transverse myelitis, optic neuritis or brainstem inflammation. In addition to treating with 1 g of daily intravenous methylprednisolone, we infused 10 mg/kg of bevacizumab intravenously on day 1 of treatment. The primary outcome measure was safety and the secondary outcome measure was efficacy.

Results
Of the 10 participants enrolled, five presented with acute transverse myelitis, four with acute optic neuritis and one with a brainstem lesion. Bevacizumab was safe in all 10 participants, with only one serious adverse event within the 90-day follow up that was not attributed to the medication. Three patients recovered to pre-attack neurological function or better, and no patients required escalation to plasmapheresis.

Conclusions
Bevacizumab is a safe add-on therapy to high-dose corticosteroids for NMO/NMO spectrum disease patients presenting with an acute relapse.

Article link